2,602 research outputs found

    Correlation of circular differential optical absorption with geometric chirality in plasmonic meta-atoms

    Get PDF
    We report a strong correlation between the calculated broadband circular differential optical absorption (CDOA) and the geometric chirality of plasmonic meta-atoms with two-dimensional chirality. We investigate this correlation using three common gold meta-atom geometries: L-shapes, triangles, and nanorod dimers, over a broad range of geometric parameters. We show that this correlation holds for both contiguous plasmonic meta-atoms and non-contiguous structures which support plasmonic coupling effects. A potential application for this correlation is the rapid optimization of plasmonic nanostructure for maximum broadband CDOA

    Development of a New, Precise Near-infrared Doppler Wavelength Reference: A Fiber Fabry-Perot Interferometer

    Full text link
    We present the ongoing development of a commercially available Micron Optics fiber-Fabry Perot Interferometer as a precise, stable, easy to use, and economic spectrograph reference with the goal of achieving <1 m/s long term stability. Fiber Fabry-Perot interferometers (FFP) create interference patterns by combining light traversing different delay paths. The interference creates a rich spectrum of narrow emission lines, ideal for use as a precise Doppler reference. This fully photonic reference could easily be installed in existing NIR spectrographs, turning high resolution fiber-fed spectrographs into precise Doppler velocimeters. First light results on the Sloan Digital Sky Survey III (SDSS-III) Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectrograph and several tests of major support instruments are also presented. These instruments include a SuperK Photonics fiber supercontinuum laser source and precise temperature controller. A high resolution spectrum obtained using the NIST 2-m Fourier transform spectrometer (FTS) is also presented. We find our current temperature control precision of the FFP to be 0.15 mK, corresponding to a theoretical velocity stability of 35 cm/s due to temperature variations of the interferometer cavity.Comment: 16 pages, 11 figures. To appear in the proceedings of the SPIE 2012 Astronomical Instrumentation and Telescopes conferenc

    Designing and evaluating complex interventions to improve health care

    Get PDF
    Complex interventions are “built up from a number of components, which may act both independently and interdependently.”1 2 Many health service activities should be considered as complex. Evaluating complex interventions can pose a considerable challenge and requires a substantial investment of time. Unless the trials illuminate processes and mechanisms they often fail to provide useful information. If the result is negative, we are left wondering whether the intervention is inherently ineffective (either because the intervention was inadequately developed or because all similar interventions are ineffective), whether it was inadequately applied or applied in an inappropriate context, or whether the trial used an inappropriate design, comparison groups or outcomes. If there is a positive effect, it can be hard to judge how the results of the trial might be applied to a different context (box 1)

    Development and validation of a deep learning model to quantify glomerulosclerosis in kidney biopsy specimens

    Get PDF
    Importance: A chronic shortage of donor kidneys is compounded by a high discard rate, and this rate is directly associated with biopsy specimen evaluation, which shows poor reproducibility among pathologists. A deep learning algorithm for measuring percent global glomerulosclerosis (an important predictor of outcome) on images of kidney biopsy specimens could enable pathologists to more reproducibly and accurately quantify percent global glomerulosclerosis, potentially saving organs that would have been discarded. Objective: To compare the performances of pathologists with a deep learning model on quantification of percent global glomerulosclerosis in whole-slide images of donor kidney biopsy specimens, and to determine the potential benefit of a deep learning model on organ discard rates. Design, Setting, and Participants: This prognostic study used whole-slide images acquired from 98 hematoxylin-eosin-stained frozen and 51 permanent donor biopsy specimen sections retrieved from 83 kidneys. Serial annotation by 3 board-certified pathologists served as ground truth for model training and for evaluation. Images of kidney biopsy specimens were obtained from the Washington University database (retrieved between June 2015 and June 2017). Cases were selected randomly from a database of more than 1000 cases to include biopsy specimens representing an equitable distribution within 0% to 5%, 6% to 10%, 11% to 15%, 16% to 20%, and more than 20% global glomerulosclerosis. Main Outcomes and Measures: Correlation coefficient (r) and root-mean-square error (RMSE) with respect to annotations were computed for cross-validated model predictions and on-call pathologists\u27 estimates of percent global glomerulosclerosis when using individual and pooled slide results. Data were analyzed from March 2018 to August 2020. Results: The cross-validated model results of section images retrieved from 83 donor kidneys showed higher correlation with annotations (r = 0.916; 95% CI, 0.886-0.939) than on-call pathologists (r = 0.884; 95% CI, 0.825-0.923) that was enhanced when pooling glomeruli counts from multiple levels (r = 0.933; 95% CI, 0.898-0.956). Model prediction error for single levels (RMSE, 5.631; 95% CI, 4.735-6.517) was 14% lower than on-call pathologists (RMSE, 6.523; 95% CI, 5.191-7.783), improving to 22% with multiple levels (RMSE, 5.094; 95% CI, 3.972-6.301). The model decreased the likelihood of unnecessary organ discard by 37% compared with pathologists. Conclusions and Relevance: The findings of this prognostic study suggest that this deep learning model provided a scalable and robust method to quantify percent global glomerulosclerosis in whole-slide images of donor kidneys. The model performance improved by analyzing multiple levels of a section, surpassing the capacity of pathologists in the time-sensitive setting of examining donor biopsy specimens. The results indicate the potential of a deep learning model to prevent erroneous donor organ discard

    Delayed Sciatic Nerve Injury Resulting From Myositis Ossificans Traumatica

    Full text link
    A motorcyclist sustained multipleâ system trauma, including a left buttock hematoma requiring decompression and evacuation. Presentation for severe hip pain and lower extremity weakness was delayed. Imaging revealed myositis ossificans traumatica compressing the sciatic nerve in the buttock. The patient underwent sciatic nerve decompression with resection of heterotopic calcification, resulting in improvement in pain and left lower extremity function. This case illustrates the contrast in differential diagnosis of peripheral nerve injury immediately posttrauma and that occurring in a slow, delayed fashion posttrauma. Myositis ossificans may be an underrecognized complication of trauma but should be considered in cases of delayed peripheral nerve injury after trauma.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147088/1/pmrj484.pd

    NGC 7582: The Prototype Narrow-Line X-ray Galaxy

    Get PDF
    NGC 7582 is a candidate prototype of the Narrow Line X-ray Galaxies (NLXGs) found in deep X-ray surveys. An ASCA observation shows the hard (> 3 keV) X-ray continuum of NGC 7582 drops 40% in ~6 ks, implying an AGN, while the soft band (< 3 keV) does not drop in concert with the hard continuum, requiring a separate component. The X-ray spectrum of NGC 7582 also shows a clear 0.5-2 keV soft (kT = 0.8 (+0.9,-0.3) keV or Gamma = 2.4 +/- 0.6; L(X) = 6 x 10**40 ergs s**-1) low--energy component, in addition to a heavily absorbed [N(H) = (6 +/- 2)\times 10**22 cm**-2 ] and variable 2-10 keV power law [Gamma = 0.7 (+0.3,-0.4); L(X) = (1.7-2.3) x 10**42 ergs s**-1]. This is one of the flattest 2-10 keV slopes in any AGN observed with ASCA. (The ROSAT HRI image of NGC 7582 further suggests extent to the SE.) These observations make it clear that the hard X-ray emission of NGC 7582, the most "narrow-line" of the NLXGs, is associated with an AGN. The strong suggestion is that all NLXGs are obscured AGNs, as hypothesized to explain the X-ray background spectral paradox. The separate soft X-ray component makes NGC 7582 (and by extension other NLXGs) detectable as a ROSAT source.Comment: text: Latex2e 10 pages, including 1 table, and 2 postscript figures via psfi

    The Apache Point Observatory Galactic Evolution Experiment: First Detection of High Velocity Milky Way Bar Stars

    Full text link
    Commissioning observations with the Apache Point Observatory Galactic Evolution Experiment (APOGEE), part of the Sloan Digital Sky Survey III, have produced radial velocities (RVs) for ~4700 K/M-giant stars in the Milky Way bulge. These high-resolution (R \sim 22,500), high-S/N (>100 per resolution element), near-infrared (1.51-1.70 um; NIR) spectra provide accurate RVs (epsilon_v~0.2 km/s) for the sample of stars in 18 Galactic bulge fields spanning -1-32 deg. This represents the largest NIR high-resolution spectroscopic sample of giant stars ever assembled in this region of the Galaxy. A cold (sigma_v~30 km/s), high-velocity peak (V_GSR \sim +200 km/s) is found to comprise a significant fraction (~10%) of stars in many of these fields. These high RVs have not been detected in previous MW surveys and are not expected for a simple, circularly rotating disk. Preliminary distance estimates rule out an origin from the background Sagittarius tidal stream or a new stream in the MW disk. Comparison to various Galactic models suggests that these high RVs are best explained by stars in orbits of the Galactic bar potential, although some observational features remain unexplained.Comment: 7 pages, 4 figures, accepted for publication in ApJ Letter

    How does childhood maltreatment influence cardiovascular disease?:A sequential causal mediation analysis

    Get PDF
    BACKGROUND: Childhood maltreatment has been consistently associated with cardiovascular disease (CVD). However, the mechanisms of this relationship are not yet fully understood. We explored the relative contribution of anxiety/depression, smoking, body mass index (BMI) and inflammation (C-reactive protein, CRP) to the association between childhood maltreatment and CVD in men and women aged 40–69 years in the UK. METHODS: We used data from 40 596 men and 59 511 women from UK Biobank. To estimate the indirect effects of childhood maltreatment (physical, sexual and emotional abuse, and emotional and physical neglect) on incident CVD via each of the mediators, we applied a sequential mediation approach. RESULTS: All forms of maltreatment were associated with increased CVD risk [hazard ratios (HRs) ranging from 1.09 to 1.27]. Together, anxiety/depression, smoking, BMI and inflammation (indexed by CRP) mediated 26–90% of the association between childhood maltreatment and CVD, and the contribution of these mediators differed by type of maltreatment and sex. Anxiety/depression mediated the largest proportion of the association of sexual abuse, emotional abuse and emotional neglect with CVD (accounting for 16–43% of the total effect), especially in women. In men, BMI contributed the most to the indirect effect of associations of physical abuse and physical neglect with CVD; in women, anxiety/depression and BMI had similar contributions. CONCLUSIONS: These findings add to the understanding of how childhood maltreatment affects CVD risk and identify modifiable mediating factors that could potentially reduce the burden of CVD in people exposed to maltreatment in early life
    corecore